Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/3708
Title: APPROXIMATION AND OPTIMALITY NECESSARY CONDITIONS IN RELAXED STOCHASTIC CONTROL PROBLEMS
Authors: SE¨ID BAHLALI
BRAHIM MEZERDI
BOUALEM DJEHICHE
Issue Date: 26-Jun-2013
Abstract: We consider a control problem where the state variable is a solution of a stochastic differential equation (SDE) in which the control enters both the drift and the diffusion coefficient. We study the relaxed problem for which admissible controls are measure-valued processes and the state variable is governed by an SDE driven by an orthogonal martingale measure. Under some mild conditions on the coefficients and pathwise uniqueness, we prove that every diffusion process associated to a relaxed control is a strong limit of a sequence of diffusion processes associated to strict controls. As a consequence, we show that the strict and the relaxed control problems have the same value function and that an optimal relaxed control exists. Moreover we derive a maximum principle of the Pontriagin type, extending the well-known Peng stochastic maximum principle to the class of measure-valued controls.
URI: http://dspace.univ-biskra.dz:8080/jspui/handle/123456789/3708
Appears in Collections:Publications Internationales

Files in This Item:
File Description SizeFormat 
APPROXIMATION AND OPTIMALITY NECESSARY CONDITIONS IN RELAXED STOCHASTIC CONTROL PROBLEMS.pdf634,25 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.