ELECTRICAL CHARACTERIZATION OF THE FORWARD CURRENT-VOLTAGE OF AL IMPLANTED 4H-SIC PIN DIODES

M.L. MEGHERBI(1), L. DEHIMI(2), A. SAADOUNE(1), W. TERGHINI (1), F. PEZZIMENTI (3), F.G. DELLA CORTE (3)

(1) Laboratory of Metallic and Semiconducting Materials, Mohammed Kheider University, 07000 Biskra, Algeria
(2) Faculty of Science, Elhadj Lakhdar University, 05000 Batna, Algeria
(3) DIMET-Faculty of engineering, Mediterranean University of Reggio Calabria, via graziella, 89122 Reggio Calabria, Italy
mlmegherbi@yahoo.fr

ABSTRACT

In this work, the forward current-voltage characteristics of n-type Al implanted 4H-SiC pin diodes have been investigated experimentally and by means of numerical simulations in the 298-378K temperature range. Our simulations were performed using proprietary simulations software. The model parameters to be calibrated in the simulation are the electron and hole minority carriers lifetimes. The measured forward I-V characteristics showed two different behaviors, the leaky and well-behaved diodes. The later diodes were considered for simulation comparison. Employing temperature-dependent carrier lifetimes as a fitting parameter, the simulation indicates that drift layer and bulk carrier lifetime ranging from 10ns to 50ns. We achieved a good agreement between simulations and measured data. The measured and the simulated forward characteristics indicate an ideality factor of about 1.3 for the region 2.5V-2.78V and 2.14 in the low injection region. Activation energies of about 1.61 eV and 2.51 eV are obtained respectively which are in good agreement with the expected values.

KEYWORDS: p-i-n diode, silicon carbide, silvaco, device simulation, lifetimes.

1 INTRODUCTION

Silicon carbide is a semiconductor material with interesting properties such as wide band gap and high breakdown field, the saturation electronic drift velocity and the thermal conductivity. As a consequence, SiC devices can perform under high-temperature, high-power, and/or high-radiation conditions in which conventional (i.e. narrow band gap) semiconductors cannot adequately perform [1-3]. Its ability to function under such extreme conditions is expected to enable significant improvements to a far ranging variety of applications and systems.

However, since this is a relatively new technology, more work must be performed to ascertain the detailed physics and real design benefits that can be obtained by developing even these simple 4H-SiC devices. To this extent, little research has been performed that combines detailed numerical device modeling with actual experiments. We help to fill this gap by using a drift-diffusion based simulator for 4H-SiC pin diodes. We then coordinate the combined use of the device simulator and experiments to extract key physical parameters, including temperature dependent lifetime, which helps to quantify the attributes of 4H-SiC device behavior.

In this paper, measurement and simulation of forward current-voltage characteristics Al implanted n-type for 4H SiC pin diodes were investigated in the range of 298K-378K. The simulation was carried out using Silvaco’s ATLAS software [4], based on the stationary drift-diffusion model including a model for incomplete ionization of the dopants. Physically based models for Auger recombination and Shockley-Read-Hall recombination are used as well. For the mobility model the empirical relation of Caughey-Thomas is used. Thus, temperature dependent electrical measurements are also employed to differentiate the various current transport mechanisms for the diodes. It will be shown that, depending on the temperature, 4H-SiC pin diodes could have various lifetimes, which is used as fitting parameters.

2 DEVICE STRUCTURE

The devices investigated are 4H-SiC p-i-n diodes. The layer structure consists, from bottom to top, of three parts: an ideal 300- m n+ 4H-SiC substrate with doping concentration of 1019 cm-3, an n-epilayer with a thickness of 4.8 m with a doping level greater than 3.5 1015 cm–3 and p+ anode regions were realized by Aluminum implant to obtain a SIMS peak value of 6x1019 cm-3 onto 5 m-thick and 3x1015 cm-3-doped epilayer, with an active area of 9.62x10-4 cm². A schematic cross-section of the diode structure and the net doping profile are displayed in Figure 1.
Implanted aluminum showed a plateau aluminum concentration of 6.1019 cm⁻³ located at the surface with a profile edge located at 0.2 µm and a profile tile crossing the n-type epilayer doping at 1.35 µm. A high temperature annealing is usually necessary to reduce the damage caused by high-energy ions during implantation [5]. The post implantation annealing is performed around 1873 K for 30 min in an induction furnace with Ar ambient. Deposition of Ti/Al and Ni on P⁺ implanted region and n⁺ back surface of the wafer, respectively, to insure the ohmic contacts.

3 SIMULATION MODELS

A 2D physically based numerical simulation silvaco package is used [4]. The simulator is designed to design device structure and solves three-coupled non-linear partial differential semiconductor physics equations, where the charge transport equations are governed, in which physical models were incorporated in the simulator such as bandgap, mobility, carrier lifetime, incomplete ionization, impact ionization and Shockley-Read-Hall (SRH). The most important physical models employed in the numerical simulations are described as follows.

3.1 Band gap models

Since no data exist for 4H-SiC bandgap temperature dependence, it is supposed that 4H-SiC has the same one of 6H-SiC, as the following Eq. [6].

\[
\varepsilon_g(T) = \varepsilon_g(0) + \frac{aT^2}{\beta + T}
\]

(1)

Where \(\varepsilon_g(0)\) is a band gap correction term. It is used together with an appropriate BGN model, \(\alpha = 3.3 \times 10^{-4}\) and \(\beta = 0\) are material parameters and \(T\) is the lattice temperature in Kelvin.

3.2 Mobility models

The low-electric-field mobility is modelled by the Caughey–Thomas equation [7]:

\[
\mu_{\text{low}} = \min\left(\frac{T}{300}, \alpha\mu_0, \beta + \frac{\max\left(\frac{T}{300}, \gamma\right) - \min\left(\frac{T}{300}, \gamma\right)}{1 + \left(\frac{N}{N_{\text{crit}}^2}\right)}\right)
\]

(2)

Table 1: Mobility parameters used in the simulations. Data taken from [4].

<table>
<thead>
<tr>
<th></th>
<th>(\mu_{\text{high}}) cm²/V/s</th>
<th>(\mu_{\text{low}}) cm²/V/s</th>
<th>(N_{\text{crit}}^2) cm⁻³</th>
<th>(\alpha)</th>
<th>(\beta)</th>
<th>(\varepsilon)</th>
<th>(\gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>500</td>
<td>40</td>
<td>2.00 \times 10¹⁷</td>
<td>-0.5</td>
<td>-2.40</td>
<td>0.76</td>
<td>-0.76</td>
</tr>
<tr>
<td>p</td>
<td>124</td>
<td>15.9</td>
<td>1.76 \times 10¹⁷</td>
<td>-0.5</td>
<td>-2.15</td>
<td>0.34</td>
<td>-0.34</td>
</tr>
</tbody>
</table>

3.3 Incomplete ionisation

In a SiC diode at room temperature and depending on the doping concentration, not all doping atoms are completely ionized, as it is the case for Si structures. This is due to the wide bandgap of SiC compared to Si.

The carrier concentration \(N_D^+ A^-(\text{i.e. the number of ionized donors or acceptors})\) can be calculated with the following equations [8].

\[
N_D^+ = \frac{N_D}{1 + \frac{g_c}{g_v}e^{\varepsilon_F - \varepsilon_D}}
\]

(3)

\[
N_A^+ = \frac{N_A}{1 + \frac{g_c}{g_v}e^{\varepsilon_F - \varepsilon_A}}
\]

(4)

Where \(g_c\) and \(g_v\) are the spin degeneracy (in this case 2 for donors and 4 for acceptors), \(N_D\) and \(N_A\) are the donor and acceptor impurities concentration, \(E_D\) and \(E_A\) are the donor and acceptor energy levels respectively, whereas \(E_F\) presents the quasi-Fermi levels.

\[
\Delta E_D = 0.065 \text{ eV}
\]

\[
\Delta E_A = 0.191 \text{ eV}
\]

3.4 Carrier lifetimes

The Shockley-Read-Hall (SRH) recombination rate is determined by the following formula [9].

\[
R_{SRH} = \frac{n^2p^2}{m^*n^*t_n^*t_p^*}
\]

(5)

Where \(R_{SRH}\) is SRH recombination rate, \(n\) and \(p\) are electron and hole densities, respectively, \(n_i\) is the intrinsic carrier density, \(E_t\) is the energy level of the recombination centers, \(t_n\) and \(t_p\) are electron and hole lifetimes, respectively, which are dependent on the doping level and the temperature.
The SRH carrier lifetimes in the above equation are modelled as functions of doping by the Scharfetter relation:

\[
\tau_{n,p} = \frac{T}{300} \left(\frac{N_i}{N_i + N_i^{SRR}} \right) ^ \alpha
\]

(6)

Where \(N_i \) is the total concentration of ionized impurities and \(\tau_0 \) is the electron lifetime in the material without impurities at 300 K. We found, the parameter set \(\tau_0=10 \) ns, \(N_i^{SRR}=2 \times 10^{18} \) cm\(^{-3} \), \(\alpha=1.72 \) and \(\gamma=1.9 \) [10]. In the simulations, \(\tau_0=5 \) ns is assumed.

3.5 Impact ionization

The acceleration of free carriers within a high electric field finally results in generating free carriers by impact ionization. The generation rate of electron–hole pairs due to impact ionization is modelled according to Selberherr [11].

\[
\alpha_{n,p} = \alpha_{n,p} \exp \left[- \left(\frac{b_{n,p}}{E} \right)^{1/3} \right]
\]

(7)

Table 2: Parameters of the electron- and hole-impact ionization coefficients of 4H-SiC. [12-13].

<table>
<thead>
<tr>
<th>Parameter</th>
<th>((0001)/(11\bar{2}0))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_n) (cm(^{-3}))</td>
<td>1.76x10(^7)</td>
</tr>
<tr>
<td>(b_n) (v/cm)</td>
<td>3.30x10(^7)</td>
</tr>
<tr>
<td>(a_p) (cm(^{-3}))</td>
<td>2.41x10(^7)</td>
</tr>
<tr>
<td>(b_p) (v/cm)</td>
<td>2.50x10(^7)</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>1</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>1</td>
</tr>
</tbody>
</table>

4 RESULTS AND DISCUSSION

The current-voltage measurement were realised on a HP4155 Semiconductor Characterization System curve tracer using 2-probes in Kelvin mode at different operating temperature. Over three identical diodes were measured and characterized with this technique, providing information on device performance. There were two diodes selected for I-V-T characterization for their best behaviour. Figure 2 shows the measured forward I-V characteristics on a logarithmic scale of 3 identical p-i-n diodes (D2A, D2E, and D2G). The I-V characteristics of well-behaved diodes D2E and D2A and leaky diode D2G are compared. The well behaved diodes D2E and D2A are characterized by a sharp turn-on at a relatively high "threshold" voltage, and the current is dominated by carrier diffusion in a region (d) and recombination in a region (c). The diffusion and recombination current mechanisms produce a quick rise in slope, which is a characteristic of high quality, low resistance, and efficient operation. Conversely, the diode conducts considerable current at much lower voltages in regions (b), which is characteristic of conduction through tunneling like leakage paths. This excess current can be considered as a ‘leak’ path or shunt connected in parallel with the (ideal) principal p-i-n junction.

![Figure 2: Measured forward characteristics of 4H-SiC of 3 diodes at 298K.](image)

In many cases, such a shunt has nonlinear characteristics, i.e. represents barrier (e.g. characteristics D2G in Fig.2). This behaviour can be attributed to the existence of defects in the active region such as screw dislocation, basal dislocation and threading edge dislocation [14]. Fig.2 also shows the effect of series resistance, \(R_s \), at voltages greater than \(~2.70 \) V as shown in region (e). In this region, the forward voltage drop due to \(R_s \) becomes comparable to the applied voltage for the diodes D2A and D2E while the diode D2G exhibit high \(R_s \). The Series resistance \(R_s \) is an important parameter that influences the electrical characteristics so were by plotting the determined from region (e) of Fig.2 where at high current, the plot becomes flat and is assumed to be dominated entirely by the \(R_s \). \(R_s \) is extracted by plotting (dV/dI) versus I above is made and point where this curve saturates to a steady minimum value.

The I-V characteristics of the well-behaved diodes D2A and D2E were selected in order to fit the simulation results. The recombination and diffusion dominated part of the forward biased pin-diode I-V characteristics are well suited as references for parameter evaluation and calibration because several possible sources of error can be excluded. Figure 3 shows the simulated forward characteristics of diodes D2A and D2E for different carrier lifetimes adjusted to the measured current at \(T=298K \) in the range of 0V to 3.5V. The fitting parameter of carrier lifetime of 10ns is obtained for bias 1.8V to 2.7V which corresponds to the recombination and diffusion regions whereas all of them coincide in the series regions at current density of 100 A/cm\(^2 \). The simulated and the measured characteristics are shown in figure 4. The thermal behavior of the 4H-SiC pin diodes in all temperatures seems to be the same, the conduction is purely unipolar due to a positive temperature coefficient and a lack of conductivity modulation in the drift region. The typical exponential region was observed.
and it is the most useful for extracting the electrical parameters for the pin diodes.

Figure 3: Measured and simulated forward characteristics of diodes D2A at 298K for various carriers' lifetimes.

The forward J-V characteristics at different temperatures (J-V-T) from 298K up to 378K were also simulated. The typical I-V-T characteristic of a diode is shown in Figure 4. The ideality factor, n, was extracted to be 1.3 between 2.5V and 2.8V at different temperatures, between these tendencies can also be seen when plotting the differential ideality factor.

\[n = q(k_BT) \frac{1}{(\alpha \ln(I)) / dz} \]

This indicates that Shockley–Read–Hall recombination is the dominant mechanism in the conduction. The activation energy, \(E_a = 1.61 \text{ eV} \), is obtained from an Arrhenius plot of \(\ln(J_0) \) versus 1000/T using the best linear fit to the expression \(J_0 \propto T^5/2 \exp(-E_a/kT) \). Indeed, above 2.78V, the differential resistance measured is 3.4 m\(\Omega \) cm2 compared to the estimated epilayer, substrate, and contact resistance of 2.5 m\(\Omega \) cm2 as obtained as follows.

\[R = 2R_c + R_{bulk} = 2R_c + qN \mu N \]

Here, \(R_{bulk} \) is the semiconductor bulk resistance, \(d \) is distance between contacts, \(S \) area of contacts, \(\mu \) electron mobility, and \(N \) the electron density.

Figure 4: I-V characteristics (solid lines) for various temperature modeled by Silvaco device simulator tool.

The corresponding experimental curves (dotted lines) are also presented for reference of diode D2A.

5 CONCLUSION

Electrical characteristics of Al implanted 4H-SiC pin diodes have been presented. Measured of three identical devices, 2 were found to be well-behaved exhibiting a minimum amount of tunneling current. One was classified as very poor, where recombination and tunneling were the dominant current processes at all voltages. For well-behaved diodes, forward I-V-T data showed current conduction due to tunneling below 1.7 V, recombination between 1.7 and 2.5 V, and diffusion processes above 2.5 V.

Series resistance was found to be a limiting factor around 2.9 V. Recombination currents yielded an activation energy of 1.53 eV and an ideality factor in the range of 2.02-2.12 compared to the ideal activation energy of 1.63 eV with ideality factor of 2. The recombination and diffusion-dominated forward characteristics of the two well-behaved pin-diodes have been also simulated within a large temperature range with excellent agreement to measured data using a single material parameter, by adjusting the technology-dependent SRH minority carrier lifetimes, a value of 10 ns was obtained.

REFERENCES

Electrical Characterization of the forward current-voltage of Al implanted 4H-SiC pin diodes

Characteristics of a 4H-SiCp-i-n Diode”, SISPA 2012, September 5-7, 2012, Denver, CO, USA.

